Homework 6, Problem 2

Consider the function

$$
f(z)=\left(\frac{z}{1-z}\right)^{1 / 3} \frac{1}{1+z^{2}}
$$

In general, if α is not an integer, then z^{α} has branch points at 0 and ∞. Thus, $f(z)$ has branch points at the values z such that

$$
\frac{z}{1-z}=0 \text { or } \infty .
$$

These are $z=0$ and $z=1$. Therefore, if we make the horizontal branch cut from 0 to $1, f(z)$ is a well-defined single-valued analytic function away from this cut.

We wish to compute

$$
I=\int_{0}^{1} f(x) d x
$$

For this, start with the contour Γ

with the intention of taking ϵ and δ both to 0 and R to infinity. The integral over this contour does not change if we take δ as small as we want because $f(z)$ is analytic in the region to the right of 1 . Thus, we can assume $\delta=0$, so the integrals over the two segments δ away from the horizontal axis cancel out. Now,
by the residue theorem,

$$
\begin{aligned}
2 \pi i(\operatorname{Res}(i)+\operatorname{Res}(-i))= & \int_{\Gamma} f(z) d z \\
= & \int_{\epsilon i}^{1+\epsilon i} f(x) d x+\int_{\pi / 2}^{-\pi / 2} f\left(1+\epsilon e^{i \theta}\right) i \epsilon e^{i \theta} d \theta+\int_{1-\epsilon i}^{-\epsilon i} f(x) d x+\int_{3 \pi / 2}^{\pi / 2} f\left(\epsilon e^{i \theta}\right) i \epsilon e^{i \theta} d \theta \\
& +\int_{0}^{2 \pi} f\left(\operatorname{Re}^{i \theta}\right) i R^{i \theta} d \theta
\end{aligned}
$$

We calculate each of these terms separately.
(i) As ϵ goes to 0 , the first term,

$$
\int_{\epsilon i}^{1+\epsilon i} f(x) d x
$$

goes to I.
(ii) The next term is

$$
\begin{aligned}
\int_{\pi / 2}^{-\pi / 2} f\left(1+\epsilon e^{i \theta}\right) i \epsilon e^{i \theta} d \theta & =\int_{\pi / 2}^{-\pi / 2}\left(\frac{1+\epsilon e^{i \theta}}{-\epsilon e^{i \theta}}\right)^{1 / 3} \frac{1}{1+\left(1+\epsilon e^{i \theta}\right)^{2}} i \epsilon e^{i \theta} d \theta \\
& =\epsilon^{2 / 3} \int_{\pi / 2}^{-\pi / 2}\left(-e^{-i \theta}-\epsilon\right)^{1 / 3} \frac{1}{1+\left(1+\epsilon e^{i \theta}\right)^{2}} i e^{i \theta} d \theta
\end{aligned}
$$

This integral therefore goes to 0 as ϵ goes to 0 .
(iii) The next term

$$
\int_{1-\epsilon i}^{-\epsilon i} f(x) d x
$$

does not simply go to $-I$ as ϵ goes to 0 . Traveling along the semicircle from $1+i \epsilon$ to $1-i \epsilon$, we pick up a factor of $e^{2 \pi i / 3}$. To see this, write $z=t-i \epsilon$ and
$w=\frac{z}{1-z}=-1+\frac{1}{1-z}=-1+\frac{1}{1-t+i \epsilon}=-1+\frac{1-t-i \epsilon}{(1-t)^{2}+\epsilon^{2}}=\left(-1+\frac{1-t}{(1-t)^{2}+\epsilon^{2}}\right)-i\left(\frac{\epsilon}{(1-t)^{2}+\epsilon^{2}}\right)$.
As ϵ goes to zero, w approaches

$$
-1+\frac{1-t}{(1-t)^{2}}=-1+\frac{1}{1-t}=\frac{t}{1-t}
$$

However, it approaches from below the horizontal axis, i.e., from the 4 th quadrant. If we write in polar coordinates $w=r e^{i \theta}$, then the point is that, by continuity, θ approaches 2π as ϵ approaches 0 . Therefore, $w^{1 / 3}$ approaches

$$
\left(\lim _{\epsilon \rightarrow 0} r\right)^{1 / 3} e^{i\left(\lim _{\epsilon \rightarrow 0} \theta\right) / 3}=\left(\frac{t}{1-t}\right)^{1 / 3} e^{2 \pi i / 3}
$$

Therefore,

$$
\int_{1-\epsilon i}^{-\epsilon i} f(x) d x
$$

approaches $-e^{2 \pi i / 3} I$.
(iv) The next term is

$$
\begin{aligned}
\int_{3 \pi / 2}^{\pi / 2} f\left(\epsilon e^{i \theta}\right) i \epsilon e^{i \theta} d \theta & =\int_{3 \pi / 2}^{\pi / 2}\left(\frac{\epsilon e^{i \theta}}{1-\epsilon e^{i \theta}}\right)^{1 / 3} \frac{1}{1+\left(\epsilon e^{i \theta}\right)^{2}} i \epsilon e^{i \theta} d \theta \\
& =\epsilon^{4 / 3} \int_{3 \pi / 2}^{\pi / 2}\left(\frac{e^{i \theta}}{1-\epsilon e^{i \theta}}\right)^{1 / 3} \frac{1}{1+\left(\epsilon e^{i \theta}\right)^{2}} i e^{i \theta} d \theta
\end{aligned}
$$

This integral therefore goes to 0 as ϵ goes to 0 .
(v) The last term is

$$
\begin{aligned}
\int_{0}^{2 \pi} f\left(R e^{i \theta}\right) i R e^{i \theta} d \theta & =\int_{0}^{2 \pi}\left(\frac{R e^{i \theta}}{1-R e^{i \theta}}\right)^{1 / 3} \frac{1}{1+\left(R e^{i \theta}\right)^{2}} i R e^{i \theta} d \theta \\
& =\int_{0}^{2 \pi}\left(\frac{e^{i \theta}}{1-R e^{i \theta}}\right)^{1 / 3} \frac{R^{4 / 3}}{1+\left(R e^{i \theta}\right)^{2}} i e^{i \theta} d \theta
\end{aligned}
$$

The size of the integrand grows on the order of

$$
\frac{1}{R} \frac{R^{4 / 3}}{R^{2}}=\frac{1}{R^{5 / 3}}
$$

as R grows. Taking R to infinity, the integral above therefore goes to 0 .
Putting this all together, we have

$$
\begin{aligned}
I\left(1-e^{2 \pi i / 3}\right)=I-e^{2 \pi i / 3} I & =2 \pi i(\operatorname{Res}(i)+\operatorname{Res}(-i)) \\
& =2 \pi i\left(\lim _{z \rightarrow i} f(z)(z-i)+\lim _{z \rightarrow-i} f(z)(z+i)\right) \\
& =2 \pi i\left(\left(\frac{i}{1-i}\right)^{1 / 3} \frac{1}{i+i}+\left(\frac{-i}{1+i}\right)^{1 / 3} \frac{1}{-i-i}\right) \\
& =2 \pi i\left(\left(\frac{-1+i}{2}\right)^{1 / 3} \frac{1}{2 i}-\left(\frac{-1-i}{2}\right)^{1 / 3} \frac{1}{2 i}\right) \\
& =2 \pi i\left(\left(\frac{1}{\sqrt{2}} e^{3 \pi i / 4}\right)^{1 / 3} \frac{1}{2 i}-\left(\frac{1}{\sqrt{2}} e^{5 \pi i / 4}\right)^{1 / 3} \frac{1}{2 i}\right) \\
& =\frac{\pi}{2^{1 / 6}}\left(e^{\pi i / 4}-e^{5 \pi i / 12}\right) .
\end{aligned}
$$

Solving for I,

$$
\begin{aligned}
I & =\frac{\pi}{2^{1 / 6}} \frac{e^{\pi i / 4}-e^{5 \pi i / 12}}{1-e^{2 \pi i / 3}} \\
& =\frac{\pi}{2^{1 / 6}} \frac{e^{\pi i / 3}\left(e^{-\pi i / 12}-e^{\pi i / 12}\right)}{e^{\pi i / 3}\left(e^{-\pi i / 3}-e^{\pi i / 3}\right)} \\
& =\frac{\pi}{2^{1 / 6}} \frac{\sin (\pi / 12)}{\sin (\pi / 3)}
\end{aligned}
$$

Using special angle formulas, we also have

$$
I=\frac{2^{1 / 3} \pi}{3+\sqrt{3}}=\frac{(3-\sqrt{3}) \pi}{3 \cdot 2^{2 / 3}}
$$

