Homework 6, Problem 2

Consider the function

z 13
f(z):(l—z> 1+ 22

In general, if « is not an integer, then z* has branch points at 0 and co. Thus, f(z) has branch points at

the values z such that -

1—-=2
These are z = 0 and z = 1. Therefore, if we make the horizontal branch cut from 0 to 1, f(z) is a well-defined
single-valued analytic function away from this cut.
We wish to compute

=0 or oo.

g /0 ().

For this, start with the contour I'

with the intention of taking ¢ and § both to 0 and R to infinity. The integral over this contour does not
change if we take § as small as we want because f(z) is analytic in the region to the right of 1. Thus, we
can assume § = 0, so the integrals over the two segments § away from the horizontal axis cancel out. Now,



by the residue theorem,
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We calculate each of these terms separately.

(i) As € goes to 0, the first term,
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goes to 1.
(ii) The next term is

—7/2 ] ) —m/2 1 ioN 1/3 1 )
/ F(1+ee)ieedd = / ( e ) T ice’df

/2 71./2 7661-0 ]. + €€i0)2
_2/3 /W/Q( —if )1/3 1 i 40
= € 7‘_/2 e € —1 + (1 + eeie)z’Le .

This integral therefore goes to 0 as € goes to 0.
(iii) The next term

—e€t

f(z)dz

does not simply go to —I as € goes to 0. Traveling along the semicircle from 1 + ie to 1 — ie, we pick up a
factor of e2™/3. To see this, write z = t — ie and
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As € goes to zero, w approaches
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However, it approaches from below the horizontal axis, i.e., from the 4th quadrant. If we write in polar
coordinates w = re'®, then the point is that, by continuity, # approaches 27 as e approaches 0. Therefore,
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Therefore,
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(iv) The next term is
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This integral therefore goes to 0 as € goes to 0.
(v) The last term is
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The size of the integrand grows on the order of
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as R grows. Taking R to infinity, the integral above therefore goes to 0.
Putting this all together, we have
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Solving for I,
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Using special angle formulas, we also have
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